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Pollutants as Developmental Toxicants in
Aquatic Organisms
by Judith S. Weis* and Peddrick Weist

Pollutants, by disrupting metabolic processes, can interfere with development, and, at critical periods
of development, can act as teratogens. Such interference with normal development can be used as a
bioassay. Some screening tests are based on this phenomenon.
As teratogens, pollutants are fairly nonspecific. Many different classes may elicit the same developmental

responses. Mechanisms of teratogenicity include disruption of mitosis, interference with transcription and
translation, metabolic disturbances in energy utilization, and nutritional deficits. These in turn interfere
with cell interactions, migration, and growth.

In aquatic organisms, environmental conditions can be critical. Interactions of pollutant effects with
salinity and with temperature have been reported. Interactions between toxicants have also been studied;
both synergism and antagonism have been reported.
Most reports of teratogenesis have been qualitative. Quantitation has usually been in the form of

percentages of embryos affected, but when severity of effect is indexed, more critical analysis is allowed.
When effects of other developmental processes such as growth are analyzed, quantitation is readily
achieved. Regeneration is an especially useful model of both differentiation and growth. These two com-
ponents of regeneration can be separately analyzed. Dose-response relationships are readily apparent.

In comparison to mammalian embryos, the use of embryos of many aquatic species for testing toxicants
has certain advantages, including lower cost and maintenance and shorter development times. They re-
spond to many of the same teratogens. A special advantage is availability for continual examination during
development so that abnormalities can be observed and recorded as they arise.

Introduction
Aquatic toxicologists have known for a long time that

embryos and larvae are often the most sensitive stages
in an animal's life cycle. For this reason, whole life cycle
tests have often been replaced by early life stage tests
(1). In these tests, organisms are exposed from the time
of fertilization until some weeks after hatching. The data
gathered are generally total hatching success and sur-
vival and growth ofthe larvae (2). These are parameters
that are easy to screen in large-scale operations and do
not require special experitse. These tests, while utiliz-
ing embryos, do not provide insight into specific tera-
togenic effects of the chemicals tested in either a qual-
itative or a quantitative way. On the other hand, from
the point of view of a regulatory agency attempting to
establish "safe levels" of a substance, the precise nature
and degree of deformities produced is immaterial; what
is important is the overall survival rate through the
embryonic and early larval stages. Early life-stage tests
were designed not as tests for developmental toxicants
in particular, but as general toxicity screening methods.
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There are, however, toxicants that exert their effects
particularly on developing systems, and regulatory
agencies are concerned about pollutants that might
cause birth defects. The Environmental Protection
Agency (EPA) has issued guidelines for risk assessment
for suspected developmental toxicants (3). The term
"developmental toxicity" is somewhat broader than
"teratology," encompassing embryotoxicity, altered
growth, and functional deficiency in the offspring (which
may not be apparent until after birth), in addition to
structural abnormalities. However, these EPA guide-
lines are concerned exclusively with mammalian devel-
opmental toxicity testing. In this paper, the term "ter-
atology" will be used in the broad, rather than in the
narrow sense. There have been, however, few studies
on aquatic species which examined functional deficiency
in the offspring.
There are bioassays being developed for environ-

mental teratogens using nonmammalian forms. One
such test is the FETAX system, using Xenopus em-
bryos (4-6). A teratogenicity index comparing LC50 and
EC50 (for malformations) can rate the relative terato-
genic strength of substances. Compounds that are
strong teratogens in this system also tend to be highly
teratogenic in mammalian systems. Teratogenicity test
systems being developed using aquatic organisms in-
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clude a planaria regeneration test, a Hydra reaggre-
gation system (7), and a sea urchin embryo screening
test (8).

In addition to the development of teratogen bioas-
says, there are many studies of reproductive and de-
velopmental effects of environmental pollutants on
aquatic biota. In addition to studies of the nature and
degree of abnormalities produced, there are attempts
to analyze mechanisms of action of the teratogens. The
effects studied include, of course, embryonic malfor-
mations, as well as effects on developmental processes
that occur at later life stages, such as regeneration.

In the bioassays being developed, as well as in most
of the experiments to be discussed in this paper (which
will focus on fish), embryos are exposed to the toxicant
after fertilization. However, embryos in the natural en-
vironment can be exposed to pollutants in two additional
ways: via yolk which is synthesized during oogenesis by
exposed females, and during the brief period between
shedding of the gametes and elevation of the chorion.
A few studies have shown that toxicants incorporated
into the egg during oogenesis can produce malforma-
tions in the embryos that subsequently develop from
those eggs (DDT, lathyrogenic agents, and zinc) (9-11).
While in most cases the chorion can act as a barrier to
partially protect the developing embryo from the toxic
effects of the pollutant (12,13) there have been a few
reports that have shown that dechorionated embryos
were actually less susceptible to the toxic effects than
embryos with an intact chorion (14,15). Recently, this
has been explained for metal ions by Rombough (16) in
relation to the Donnan equilibrium. Those cations that
are electronegative (e.g., Zn2+, Cd2+, and Pb2+) can
readily penetrate the chorion (which acts as an ion ex-
changer) and are concentrated in the perivitelline fluid.
Thus, embryos with a chorion are more susceptible to
these ions than those without. The reverse is true of
electropositive ions (e.g., Hg2+, Cu2+, Ag2+); these
bind to the chorion, allowing it to act as a barrier.

Teratogenic Effects
Teratogens tend to be fairly nonspecific in the nature

of the defects that they cause (17). Although many dif-
ferent substances can produce the same kinds of de-
formities, the actual modes of action of the different
chemicals may differ. General developmental mecha-
nisms that can be disrupted and lead to abnormal de-
velopment include: abnormal cell or tissue differentia-
tion, excessive or inadequate cell death during
development, inadequate cell migration, improper cel-
lular communication, and disrupted metabolism (res-
piration, absorption, excretion, or secretion).

Fish embryos, in general, tend to become abnormal
in certain ways. The most sensitive system appears to
be the developing skeletal system, and flexures (sco-
liosis, lordosis) as well as stunting are seen in many
species treated with a variety of teratogens. Another
common set of abnormalities involves the developing
circulatory system. Circulatory stasis, a failure of the

heart tube to bend, and edema of the pericardial cavity
are also commonly observed defects. The developing
optical system is also very sensitive, and many inves-
tigators have observed optical malformations, such as
microphthalmia and anophthalmia, as well as cyclopia
and intermediate conditions of fusion of the two optic
vesicles. Although not strictly a developmental anom-
aly, another phenomenon often observed in teratogen-
exposed embryos is a general retardation of develop-
ment. This decrease in developmental rate, sometimes
seen as an arrest of development, may permit terato-
gens to act for a longer than normal time during sen-
sitive ("critical") stages, and thus intensify the severity
of the anomalies produced. Embryos of Fundulus, ex-
posed continuously to the insecticides carbaryl or par-
athion, arrested their development at stage 22 or 24,
depending on the time of initial exposure. If, however,
they were transferred to clean water after 4 days, they
could resume development, but most of them developed
circulatory abnormalities (18). The period of arrest
made them vulnerable to the production of the malfor-
mations. Developmental arrest in itself does not cause
abnormalities upon recovery and the resumption of de-
velopment. Laale and McCallion (19) found that ho-
mogenates of zebrafish embryos caused intact embryos
to arrest their development at stage 17-18. These em-
bryos showed no mitotic figures. Upon return to fresh
water, the embryos resumed normal development.
Fundulus embryos forced to develop anaerobically by
cyanide or nitrogen arrested at high blastula. Upon re-
lease from the anaerobic conditions, normal develop-
ment resumed (20). Therefore, it is not the develop-
mental arrest itself but the continuous exposure to a
teratogen at that critical time that causes the anomalies
once development resumes. Conversely, environmental
or inherent factors that enable embryos to develop more
rapidly, spending less time at critical stages, can make
them less susceptible to teratogenic influences (21,22).

Optic Malformations
Abnormalities in the development of the optic cups

have been observed by many investigators. Dial (23)
observed disorganized retinas, abnormal pigment dis-
tribution, and invasive blood sinuses in eyes of medakas
treated with methylmercury. Wilson (12) found similar
disturbances in embryos of herring, plaice, and sole
treated with oil dispersants. Lonning (24) found reduced
pigmentation and protruding lenses in oil-treated cod
and flatfish embryos; these anomalies were produced
when the embryos were treated for as little as 1 to 2
hr during cleavage stages. Similar optic cup abnormal-
ities have been produced in Xenopus embryos by var-
ious fungicides (25). Microphthalmia and anophthalmia
were observed in Atlantic silversides (Menidia meni-
dia) embryos treated with insecticides (26) (Fig. 1) and
in rainbow trout (Salmo gairdneri) embryos treated
with benzo[a]pyrene (27). Reduced mitotic index and
increased incidence of pyknotic cells in the optic cups
were observed in the latter treated embryos. Thus, re-
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FIGURE 1. Photomicrograph of whole, fixed 2-week-old Menidia menidia embryos (approximately 20 x): (A) control embryo; (B) embryo
treated with the insecticide carbaryl (Sevin) at 10 ,ug/L; unilateral anophthalmia is demonstrated, with the site of the missing eye at X.
Reproduced from Weis and Weis (26).

duced cell number in the eyes, due to the genotoxic
action of the chemical, can account for the abnormally
small eyes. Similarly, Perry et al. (28) have noted de-
crease in mitotic index and increased percentage of ab-
normal mitoses in methylmercury-treated embryos of
F. heteroclitus. Embryos with more severe teratogenic
responses also exhibited more severe mutagenic re-
sponses. Pelagic fish eggs can be used to monitor pol-
lutant effects by studying the mitotic index and chro-
mosome abnormalities in specimens collected from
differentially polluted areas (29).
Many investigators, starting with Stockard, have

noted a defect in forebrain development in which the
eye rudiments converge, sometimes to the point of cy-
clopia. The cyclopic eye noted in MgCl2- (30), HgCl2-
(31), and methylmercury-treated (32) Fundulus em-
bryos, as well in ethanol-treated (33) Brachydanio rerio
exhibits an unusually large optic cup and lens, since it
is the result of the fusion of the two separate rudiments.
The mechanism underlying the fusion of the optic ves-
icles is believed to be an inadequate induction of the
forebrain, which then permits the two vesicles to ap-
proach one another in the anterior midline of the em-
bryo. This anomaly, therefore, is not strictly an optic
one, but its genesis involves a defect in craniofacial de-
velopment.

Cardiac Malformations
Defects involving thin atrial and ventricular walls,

failure of the heart to bend ("tube heart"), decreased
circulation, and hemostasis, often accompanied by peri-
cardial swelling and lack of blood pigment, have been

observed often in fish embryos. Among the environ-
mental pollutants producing these anomalies are alka-
line pH in the Atlantic salmon, Salmo salar (34), cad-
mium in S. gairdneri (35), carbaryl in Fundulus
heteroclitus (18), carbaryl, parathion and malathion in
Oryzias latipes (36), mercury compounds in Fundulus
heteroclitus (31,32), mercury in Oryzias latipes (37),
lead in Brachydanio rerio (13), toluene in 0. latipes (38),
toluene in Pimephales promelas (39), 2,4,5-T in 0. la-
tipes (40), ethyl carbamate in Brachydanio rerio (41),
and aflatoxin in 0. latipes (42). It is believed that the
pericardial edema is a result of a fluid imbalance caused
by the retarded circulation (17). While the underlying
mechanisms in the production of these cardiac abnor-
malities in fishes have not been ascertained, some work
on bird embryos may reveal similar mechanisms. Proc-
tor and Casida (43) showed that organophosphate and
carbamate insecticides that produce similar effects in
bird embryos do so by lowering levels of NAD, thereby
lowering the cells' ATP and energy levels. Rogers et
al. (44) demonstrated that the effects of organophos-
phate insecticides in chick embryos could be counter-
acted by adding NAD. It is possible that the same mech-
anisms of action are operative in the teleost embryo as
well. The looping of the heart has been shown to be
caused by shape changes of the heart cells (45), and
lowered energy levels may not permit this energy-re-
quiring process to take place. Many ofthe toxicants used
in the experiments above are also inhibitors of cell
growth (16), or mitotic inhibitors (46). This growth in-
hibition can be responsible for the failure of the heart
tube to thicken properly, which, in turn, is responsible
for the failure of circulation and the subsequent he-
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mostasis. It is likely that the lack of blood pigment,
which is often observed, has a different etiology, in-
volving inhibition of hemoglobin synthesis.

Skeletal Defects
Perhaps the most commonly observed responses in

fish embryos are axial malformations, ranging from
slight bending in the skeletal axis to the extreme of no
axial development at all. Flexures and stunting have
been observed in Brachydanio rerio treated with ethyl
carbamate (41), Pimephales promelas treated with tol-
uene (39), Oryzias latipes treated with aflatoxin (42),
Fundulus heteroclitus treated with mercury com-
pounds (31,32), Oryzias latipes treated with methyl-
mercury (47), F. heteroclitus treated with water-soluble
fractions of oil (48), and S. gairdneri treated with cad-
mium (35). Stunting and bent axes have been produced
in amphibian embryos by exposure to a variety of her-
bicides and fungicides (25,49), or to mercury (50).
A number of investigators have noted a lead-induced

production of spinal curvatures in various species of fish
including S. gairdneri (51), B. rerio (52), and F. het-
eroclitus (31) (Fig. 2). The nature of these deformities
is comparable to those caused by dietary deficiency in
vitamin C or in tryptophan; however, providing excess
vitamin C did not counteract the effects of the lead in
the rainbow trout (53). Muramoto (54) attributed the
Cd-induced vertebral column damage to a decrease in
calcium and phosphorus in the bones which weakened
them and made them susceptible to curvature by muscle
action.

FIGURE 2. One-day post-hatch Fundulus heteroclitus larvae (ap-
proximately 13 x ): (A) control; (B-D) experimental. Such inabil-
ity to uncurl after hatching has been elicited by lead and by meth-
ylmercury. Specimens C and D also demonstrate synophthalmia.
Reproduced from Weis and Weis (32).

A failure of axis development was found in Fundulus
embryos exposed to actinomycin D, an inhibitor of mes-
senger RNA synthesis (55). Despite the failure of axial
development, cell differentiation was found to go on,
and blood islands, pigment cells, etc., were produced.
The fact that cleavage proceeded normally in such em-
bryos indicated that the messenger RNAs for the pro-
teins needed for early development had been made pre-
viously by the oocyte and are stable. The new
messenger RNAs synthesized after fertilization pro-
duce protein products which become important for de-
velopment after the blastula stage, and their absence
in the treated embryos is considered responsible for the
developmental defects. Similar studies with a protein
synthesis inhibitor, patamycin, produced a specific se-
ries of developmental failures, dependent on the time
of initiation of the treatment. Defects ranged from a
failure of cleavage, through abnormal blastulation, fail-
ure of axiation, to anencephaly, depending on the time
of initiation of the exposure (56).
Very different etiologies may be responsible for skel-

etal defects produced by some pesticides. Mehrle and
Mayer (57), studying toxaphene, found that it reduced
the amount of collagen in the vertebral column and al-
tered its amino acid composition. The weakened struc-
ture was believed to be responsible for the bent con-
dition. Kumar and Ansari (58), studying malathion,
hypothesized that vitamin C may be responsible for the
induction of enzymes for detoxifying pesticides and that
the depletion of the vitamin was the immediate cause
for the skeletal deformities, since vitamin C is required
for polymerization of tropocollagen.
Some pesticides that are neurotoxic may produce

skeletal deformities by a physiological rather than de-
velopmental mechanism. Kepone (59), malathion (60),
carbaryl (61), and other organophosphates (62), produce
neuromuscular spasms which cause the bent condition.
Couch et al. (59) observed that the severe spasmodic
contortion of the muscle actually broke the centra of
the vertebrae in Cyprinodon variegatus. Solomon (61)
demonstrated that the bent condition, which could be
produced in 0. latipes fry by malathion, was reversible,
thereby indicating a physiological rather than devel-
opmental cause. Observations of neuromuscular disor-
ders are not surprising for insecticides that are acetyl-
cholinesterase inhibitors.
A totally different sort of skeletal anomaly is total or

partial duplication of the spinal axis (twinning). This
has been observed by Laale (33) in ethanol-treated ze-
brafish, and by Hose et al. (27) in benzo[a]pyrene-
treated flatfish. Baumann and Sander (63), studying the
developmental mechanisms responsible for this condi-
tion, concluded that cycloheximide and other teratogens
delay the proliferation and movement of deep cells more
strongly than they delay cell differentiation. The cells,
therefore, embark on organogenesis before reaching
their final destinations, thereby causing a split in the
embryo in the trunk region due to the failure to complete
epiboly.
A very subtle skeletal defect is the increase in asym-
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metry in the fin ray count in the left versus right pec-
toral fins. This was observed by Valentine and Soule
(64) in DDT-exposed grunion, Leuristhes tenuis, and
the degree of asymmetry was dose-related. These in-
vestigators further noted that field collected specimens
from a polluted area had higher asymmetry levels than
those from a clean area. Asymmetry is similar to mer-
istic variations, which are not considered in this paper,
since in both cases it is difficult to distinguish what is
normal variation from what is an abnormality.

Pigmentation
A decrease in pigmentation has been noted by some

investigators in aquatic species exposed to a variety of
toxicants, (25,47,49,65). In addition to this general de-
crease in pigmentation, Ozoh (65) noted a disruption in
the normal striped pigmentation pattern in the zebra-
fish, B. rerio, exposed to lead.

Interactions
A number of investigators have noted that varying

environmental conditions such as salinity can alter the
susceptibility of embryos to toxic effects of pollutants.
Lowered salinity has been found to increase the toxicity
of methylmercury to F. heteroclitus (21) and to 0. la-
tipes (66). Similarly, decreased salinity increased the
toxicity of cadmium to winter flounder (67). The en-
hanced toxicity at lower salinity may be due to greater
uptake of water, and therefore, of the toxicants.

Since polluted areas usually involve more than one
chemical, it is of interest to analyze the effects of com-
binations of aquatic toxicants. Thus, there have also
been studies of the interactions of two toxicants on de-
veloping embryos. Many of such studies with metals
have shown antagonisms, in that the toxicity of one
metal was reduced by the presence of the other. Zinc
and cadmium reduced the effects of methylmercury on
F. heteroclitus (21), silver reduced the toxicity of cad-
mium to winter flounder (68), lead reduced toxicity of
copper to zebrafish (13), and selenium reduced the tox-
icity of mercury to medaka embryos (69). In the last
study, however, the selenium was not effective until
the liver had developed in the embryos, indicating an
important role of that organ in selenium protection
against mercury.
Some studies of combinations of insecticides have

shown synergistic interactions. Solomon and Weis (36)
demonstrated greater than additive effects of low con-
centrations of malathion and carbaryl in the medaka,
0. latipes, and Koenig (70) showed that small amounts
of mirex would enhance the toxicity ofDDT to embryos
ofthe cyprinodont, Adina xenica. In both these studies,
however, when higher concentrations were used, no
synergistic effects were observed. Zinc and cygon in-
teracted antagonistically at low levels, while they were
additive at other levels (71). Teratogens with antago-
nists or synergists may produce different metabolic ef-

fects in the embryo, and thereby alter the the induced
abnormalities qualitatively or quantitatively (72).

Critical Stages
A number of studies have addressed the issue of crit-

ical periods in development for the production of an-
omalies. Weis and Weis (32) have shown that gastru-
lation in Fundulus is the critical period for the genesis
of craniofacial defects by methylmercury. This corre-
sponds to the time of induction of the forebrain, defects
which are believed to be responsible for the convergence
of the optic cups. Akiyama (73) identified early cleavage
and the time of brain and optic vesicle formation as the
times of highest susceptibility of 0. latipes to mercury.
Sharp and Neff (41) found that the duration of exposure
to mercuric chloride was important in the genesis of
spinal curvature in the killifish, F. heteroclitus, but
identified no critical period. Stoss and Haines (38) iden-
tified gastrulation as the critical period for the produc-
tion of malformations in 0. latipes by toluene. However,
in studying carbaryl-induced heart anomalies in 0. la-
tipes, Solomon and Weis (36) found no specific critical
period. Even when the complete four-chambered heart
had developed, the insecticide could still reduce heart
size and bending, produce edema and oscillation of blood
flow. Thus, it seemed that the insecticide affected var-
iability of cells rather than developmental processes.

Quantification of Effects
Most reports of teratogenic effects present the data

in a qualitative way, describe the defects, and give a
percentage ofembryos affected. However, in comparing
effects of different chemicals or responses of different
populations of the same species, it is useful to have a
more quantitative approach to the effects. Since many
malformations can be more or less severe, it is possible
to devise indices to rank embryos in terms of how se-
verely they are affected. Anderson and Battle (75), for
example, rated chloramphenicol-treated zebrafish em-
bryos on a three-part scale. More refined indices of cran-
iofacial, cardiovascular, and skeletal anomalies pro-
duced by methylmercury have been devised (32,76)
which can give a quantitative estimate of the severity
of the defect (Fig. 3). This allows for much more detailed
and precise analysis than simply reporting the per-
centage of embryos affected.
Using indices described above, we have noted strik-

ing population differences in susceptibility of Fundulus
embryos to teratogenic effects of methylmercury (77).
Embryos from a polluted environment were much less
affected than those from a more pristine environment.
Possible mechanisms for the increased resistance are a
more rapid development time and a less permeable cho-
rion (22). Another possible mechanism that has been
investigated is the possibility that metal-binding pro-
teins, e.g., metallothionein, which protect against toxic
effects of metals by sequestering them, might be found
in higher amounts in the embryos from the polluted
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0 1 *2 3 4.5:0
FIGURE 3. Heads of Fundulus heteroclitus embryos treated with 50 ,ug/L methylmercury, demonstrating the 6-part craniofacial index, in

which 0 is normal, 1-5 are degrees of convergence of the eyes leading to cyclopia, and 6 has no discernable cranial structure. Reproduced
from Weis et al. (76).

population. However, significant amounts of this pro-
tein were not found until late developmental stages, well
past the period of genesis of the malformations (78).

Regeneration
Regenerative processes are akin to embryonic de-

velopment in that morphogenesis and cell differentia-
tion must occur in order to replace the missing struc-
ture. These processes can be affected by environmental
toxicants. When amputation of a limb or fin occurs, the
first process to take place is wound healing. This is
followed by the formation of a regeneration bud, or
blastema, which is produced by dedifferentiated cells at
the site of the amputation (Fig. 4). Wound healing and
blastema formation must occur before regeneration
proper, and if they are retarded by toxicants, the ini-
tiation of regenerative growth will be delayed. By
means of analysis of covariance, it is possible to separate
out effects of a chemical on blastema formation from
those on the growth of the regenerate. Wound healing
and blastema formation will affect the intercept, while
regeneration itself will affect the slope of the growth
curve. Limb regeneration in newts has been observed
to be retarded by cadmium (79), methylmercury (80),
and the fungicide Maneb 80 (81). In the last study, the
growth retardation was ascribed to vascular distur-
bances that prevented the cell contacts necessary for
blastema formation. Fin regeneration in fish has been
observed to be inhibited by DDT, malathion, parathion,
carbaryl (82), PCBs and fuel oil (83), cadmium (84), and
methylmercury (85). The Cd-treated fins also exhibited
vascular disturbances that may have been responsible
for the diminished growth. The reduction of regenera-
tive growth caused by methylmercury may be related
to its action as a mitotic inhibitor (46).

Fish treated with zinc showed a dose-dependent ac-

FIGURE 4. Microphotograph of regenerating caudal fin ofFundulus
heteroclitus one week after amputation. Measurements are made
from A to B.

celeration of regeneration rate (86). Both wound healing
and regeneration rate proper were accelerated. Zinc is
a trace nutrient requirement which counteracts reduced
DNA synthesis (87). This effect may be responsible for
the observations on regeneration. Acceleration of
growth has been observed in other systems at concen-
trations of toxicant below those which cause retarda-
tion. This growth stimulation by low levels of toxicants,
termed "hormesis," is believed to result from overcom-
pensation by homeostatic control mechanisms (88).
Since all zinc concentrations tested caused acceleration
of regeneration, it cannot be known whether or not this
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is an example ofhormesis. However, cadmium can cause
hormesis in regenerating fins of fish that were previ-
ously pre-exposed to low concentrations (89).

Advantages of Using Aquatic
Species

Testing developmental effects of toxicants on aquatic
species rather than mammalian embryos has a number
of advantages. The organisms are much less costly to
obtain and to maintain, and can often be collected from
the natural habitat. Their embryonic period is generally
shorter, so that data can be collected more rapidly.
There is a general, though not absolute, correlation be-
tween substances that are teratogenic in aquatic ani-
mals and those that are teratogenic in humans. But
then, there is also not a 100% correlation between sub-
stances teratogenic in mice and rats and those terato-
genic in humans. Even among fish, substances that are
embryotoxic or teratogenic for one species may be tol-
erated by another species at much higher concentra-
tions. Predictions of biological effects on a given species
cannot necessarily be made on the basis of studies on
another species. Nor can predictions of effects on em-
bryos be extrapolated from effects on adults. Large
numbers of embryos can be obtained from many fish
species. This can enable more in-depth analysis of the
data. It is easy to study differences among females in
the susceptibility of their embryos to toxicants (75) and
to investigate population differences in resistance to
particular teratogens (77). Perhaps the greatest advan-
tage of using aquatic species in teratology studies, how-
ever, is the fact that there is no uterus and female animal
separating the developing embryos from the eyes of the
investigator. One can examine the developing embryos
whenever one wishes, make detailed observations on
the structure and functioning of the living embryos, and
follow the progress of a developing abnormality.
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